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AbslraeL The appropriate generalization of the Clausius-Ctapeyron equation to describe 
the first-order melting Vansition of twodimensional Wigner electron crystals is used (a) 
within a phenomenological kamework and (b) in conjunction with microscopic theories 
relating to anyons and composite fermions, to represent the main featurs of the melting 
cuwe as a Iunction of Landau level filling factor U. 

1. Introduction 

The proposal of Durkan et al (1968) that Wgner electron crystallization should be 
aided by an applied magnetic field H has now been brought to fruition, starting 
with the experiment of Andrei el al (1988) on twodimensional GaAs/AIGaAs hetero- 
junctions. This work in which preliminary data on the melting curve of the Wigner 
crystal in WO dimensions as a function of field were presented, has subsequently been 
confirmed and extended (see Glattli el ai 1991). Structure in the phase diagram was 
reported by Glattli ef QI (1991), Plaut ef al (1991) and Li ef a1 (1991). In particular 
Buhmann ef a1 (1991), using luminescence measurements on the same system as that 
studied by Andrei ef a1 (1988) have suggested a schematic phase diagram, giving the 
melting temperature T, versus the Landau level filling factor Y = nhc jeH,  where 
n is the electron density, as shown in figure l(a). The most notable features of this 
phase diagram are the re-entrant liquid phases. The latter work prompted us to give 
the thermodynamics of the Wigner crystal melting curve in a magnetic field H (Lea 
et a1 1991). The main result of that study was for the slope of the melting curve in 
the (H, T,,) plane: 

aT , /BH = - A M J A S  (1) 

where A M  and A S  represent the changes across the melting curve of the magnetiza- 
tion M and the entropy S respectively. The re-entrant aspects of the phase diagram 
plotted by Buhmann ef al (1991) having maxima in the ( U ,  T,) plane, define points 
where A M  = 0. Rewriting (1) in terms of U readily yields 

aT,,Jav = ( H J v )  A M j A S .  (2) 
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Figure 1. (a) Schematic phase diagram showing Wgner nyslals in regions C1-G as 
pmposed by Buhmann U al (1991). (6) Model calculations of the phase diagram. The 
solid lines show a model based on (IO), (12) and (13) as described in the text. The 
dashed line in phase 13 only shows the shematic form given by the phenomenological 
equation (4). 

It is clear from (2) that, to model the Wigner crystal melting curve, one must study 
the changes in magnetization AM,  and the entropy AS. 

The purpose of the present paper is twofold: 
(i) to provide a phenomenological model that will allow the integration of (2); 
(ii) to study the magnetism of thc anyon model in the present context, bearing 

mind the remarkablc variation of the magnetism of the (Laughlin) electron liquid as 
a function of U, deduced in our earlier work (Lea ef a1 1991). This also leads to an 
analysis based on composite fermions. 

2. Phenomenological model 

It seems natural enough, in view of the zeros in AM already referred to, at tem- 
perature T3 and Y = Y , say, in region C, (see figure l(a)), to express A M  as an 

curve is a maximum near v, and falls to zero as T, goes to zero, we can write (2) as 
expansion in U-' - Y; B . Assuming that the entropy difference along the melting 

aT,/av o( ( H / v ) ( u - l -  Y;')/[l- a(U-1- u;')2] 

T, (v)  = T3[1 + c h ( 1  - a(v-l- U;')')] 

(3) 

(4) 

where a is a constant close to unity, which can be integrated to give 

where the parameters C and a must be determined experimentally. The form of 
T,,(v) given by (4) is shown in figure I (b),  for the C, phase. Further t e r m  in the 
expansion in v - l  - v;' could be included that would change the detailed shape of 
the phase boundaries. This analysis should apply between any 'two re-entrant phases. 
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3. Anyon model: classical limit 

Having established a primitive phenomenological form appropriate to represent re- 
gions G-C, in figure 1, let us now turn to a model which can give further insight 
into the microscopic origin of the phase diagram. This is the anyon model, in which 
one has fractional statistics (Wilczek 1W) characterized by a parameter y, which has 
the value 0 for fermions and the value 3 ~ 4  for bosons. 

A dilute (nondegenerate) gas of non-interacting two-dimensional anyons (mass 
m) in a magnetic field has been studied by Johnson and Canright (1990) and also by 
Dowker and Chang (1990). The second virial coefficient B, in the equation of state 
for the pressure P, 

P/nkT = 1 + nB,(T) + O(n?)  (5) 

is given by 

B,(T) = (X'/x)[y - exp(4yx)/(2sinh(2x)) + 1/(4tanh(x))]  (6) 

where X is the de Broglie thermal wavelength given by X2 = h 2 / 2 n m k T ,  2 = 
b c / 2 k T  and cdc is the cyclotron frequency. Hence the differential magnetization 
per unit area of the anyons relative to a classical gas is 

AM,(-/) = - (n? /2m)aB, / ax .  (7) 

This is shown in figure 2 as a function of y for x = 1, 2, 5 and 10. Note that 
the magnetization î r not symmetric about y = 0, but does have the same value for 
y =-I' 2' 

0- 1 

0 

A M  

- 0 1  

-0.5 0.5 
U 

Figure 2 Anyon magnetism A Ma of an anyon gas according lo (7). versus the fractional 
statisti@ parameter y, Different CUNCS (a-d) correspond 10 values of the parameter 
z = 1, Z 5 and 10 respeclively. 
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In order to relate (2) to a field-dependent magnetization it is necessary to relate 
the statistics parameter y to U. ?b gain orientation, let us refer back to figure 1. 
%king the admittedly schematic form there literally, one notes that T, = 0 at values 
U = l/q, where q = 9, 7 and 5. At these very points, microscopic theory predicts a 
Bose mndensate (Lee 1991), although this is immediately unstable against raising the 
temperature. However, this motivates the assumption that at U = l / q  the value of 
7 corresponds to the boson value. Hence as the number of flux quanta per electron, 
I/u, increases, the particles alternate between fcrmions and bosons. Timing to the 
maxima in the melting curve in the (U, T,) plane, one has O M  = 0, and since 
the Wigner electron crystal is built from fermions, we expect that the first-order 
melting transition described by the analogue, equation (I), of the Clausius-Clapeyron 
equation will degenerate at these points to a second-order transition, since AA4 = 0 
there. Hence one assumes that the anyons are fermions at the maxima in the melting 
cuwe. The assumption that y is a continuous variable between these limits is related 
to a mean-field approximation (Johnson and Canright 1990). If we assume that for 
non-integral values of q the particles are anyons with fractional statistics, then the 
magnetization will be dependent on the field, from (2). 

Figure 3. AM. as a function of Landau level filling factor Y .  This plol is obtained 
from figure 2 ty using the 7-v relation given in (8). 

These ideas can be subsumed in the relation 

y =  1 / 2 U - j  (8) 

where the integer j is chosen in such a way that y varies in the range from - 4  
to +$ as U decreases. This assumption allows plots of the field-dependent AM, 
versus U of an anyon gas for various parameter values, &om (5) and (6), as shown 
in figure 3. The plot is calculated for z = A / u ,  which corresponds to a variable 
field at a &xed temperature, for the arbitrary value A = 1. It can be seen that the 
magnetization of this non-interacting anyon gas has many of the features required to 
explain qualitatively the phase diagram of the 2D Wigner crystal. In particular, AM, 
changes sign at U = l/q as required to explain the re-entrant nature of the solid 
regions q, C, and C,. It also predicts that there may be further structure in the 
phase diagram of the region C,, at v = l/q, where q is an odd integer. It appears 
likely that the purely statistical effects described here will persist in the presence of 
interactions and that similar magnetization changes will also occur at the FQHE states, 
at integral kactions. 
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While, in new of the simplified nature of the assumptiont, equation (7), we do 
not feel it appropriate to press the detail quantitatively, it seems remarkable that the 
anyon model does indeed extend the de-Haasvan-Alphen-type singularities referred 
to by Lea et a1 (1991) into the region U a 1. 

A Low-temperature treatment: composite fermion model 

A closely related approach at low temperatures, in contrast to the classical limit 
discussed above, is to use the idea of ‘composite’ fermions (Jain 1989, 1990, 1992, 
Jain and Goldman 1992) in which a fermion plus an even number of flux quanta is 
also a fermion. These composite fermions are then regarded as separate entities in 
the magnetic field of the remaining flux lines, with a new filling factor vi given by 

vi = U/(] - 2 i v )  = p / (  q - 2 i p )  (9) 

where ?i is the number of flux quanta associated with each composite fermion. The 
second part of (9) gives vi for the fractional quantum Hall states with U = p / q .  For 
each of these states a value of i can be chosen such that vi is an integer. The sign of 
vi depends on whether the flux in the composite fermion is parallel or anti-parallel 
to the applied field. For the FQHE State3 with p = 1, vi = 1 with z = 1, 2, 3, 4, 
5 for q = 3, 5, 7, 9, 11 and so on. This idea has been successfully used by Jain 
and Goldman (1992) to map the fractional quantum Hall effect states to equivalent 
integer quantum Hall effect states. 

o t  

S l h  

c 
0.2 0.3 0.35 

U 

Figure 4 The en(ropy S(u)/k per electron for lhe composite fermion model, calculated 
using (9). The various l i n s  are marked by the value of i, he number of flux quanta 
pairs in each composite fermion. Note thal S( v )  goes lo zero at each ordered state 
U = p J q  of the fractional quantum Hall effect. 

t We reiterate thal the virial expansion used is only strictly valid in lhe classical limif. 
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4.1. Entropy of h e  compmile firmions 
If the entropy S ( v )  of the liquid goes to zero at the fractional filling factors, then 
we can relate the entropy to the equivalent integer state based on vi. Using the 
results for the de Haas-van Alphen effect we have the entropy per electron S( v) for 
a partially full level: 

M J Lea et ai 

for U, < 1, and equivalent forms for v, > 1, where vt is given by (9). The entropy 
of these fermions for i = 1, 2 and 3 is shown in figure 5 for 0.1 < v < 0.35 and 
goes to zero at each ordered state of the fractional quantum Hall effect. This entropy 
expression will only be valid as long as the system behaves as an assembly of weakly 
interacting composite fermions. Note, however, that the entropy close to the Y = 
state, for instance, has the Same form for i = 2 and i = 3. The functional form of 
S( U) between two neighbouring states is close to the phenomenological expression 
used in section 2 According to the third law of thermodynamics, the entropy S ( v )  
away from the ordered states must also go to zero in the very-low-temperature Limit. 
This could occur via further ordering among the excitations or, in real systems, via 
some form of localization due to random potentials, as in the integer quantum Hall 
effect, which could also lead to the observed Hall plateaus. The effect of these 
localizing potentials would presumably also lead to a pinned Wgner crystal as the 
solid ground state, as also observed experimentally (Glattli el a/ 1991). 

I 
0 1  035 

Figure 5. Form of internal energy along the melting am”. expressed as AEJkT,.. 
Gradients a1 the displayed cusps in A E are known in terms of excitation energies and lhe 
energy gps A,. This information is used asymptotically in this figure at U = I / q .  The 
turning p i n s  shown in A E versus Y are as required by the thermodynamic arguments 
presented by Lea a al (1991). 

4.2 Energy af h e  eleclron liquid 

The internal energies (including thc magnetic potential energy term - N M ,  which is 
different from the definition employed by Lea et a/ (1991) of the electron liquid and 
solid have been calculated by several authors (see Isihara (1989) for a review). For 
Y < 0.1 the solid is thought to have the lower free energy at T = 0 and is then 
the ground state. The Laughlin liquid states have the lower ground-state energies for 
v = l / q  where q = 3,5,7 and probably 9. If the temperature T of one of these states 
is increased, then quasi-particle excitations are thermally excited across an energy gap 
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A.  n o  (1990) has shown that this energy gap is field depndent and must have the 
form 

A = A,e2/ l  A/kT, ,  = r,A,&$ (11) 

where I = (hc/eH)'/* is the magnetic length, and A, is a dimensionless parameter 
to be calculated or found from experiment. For U = l / q  = 4. A, = 0.018 (Isihara 
1989). The second part of the equation gives the energy ga in units of the transition 

peville 1988). If the magnetic field is increased or decreased then quasi-particle or 
quasi-hole excitations will be generated with energies e+ and c- respectively where 
E +  + E -  = A, since an increase in temperature creates neutral pairs of excitations. 
If an excitation is equivalent to an extra or missing flux line then we can write the 
energy per electron near U = U, = l / q  as 

temperature of the classical electron gas T,,, = e2(rn)'  P 2 / k r ,  where rm = 127 

E ( v )  = E, + [ l ( ~ - ~ q ) l / v q l Q c *  (12) 

where E, is the ground-state energy at U = l / q .  Hence the energy E(v) will have 
cusps at Y = l / q ,  as shown in figure 5. 

4.3. Magnetization of h e  electron liquid 

The magnetization M = -(BF/BH), where F is the free energy F = E - T S .  
At zero temperature, a cusp in the energy near U,, for instance, will give a jump in 
the magnetization per electron of magnitude q(c+ + z - ) / H  = q A / H  as U passes 
through the ordered state. Hence the magnetization may change sign as U passes 
through each of the ordered states indicated by S = 0 in figure 5. The schematic 
variation of M with U will therefore be very similar in structure to the diagram for 
the anyon gas in figure 3, although many more states may be revealed. 

4.4. The liquid-solid phase diagram 

We can now return to the discussion of the field dependence of the electron-solid 
phase boundary. If the liquid phases at U e 4,  S, and $ do have lower internal 
energy than the solid they will form the ground state at zero temperature. For U < uq 
the energy will increase as excitations are created until Es = EL (the subscripts refer 
to the solid and liquid phases). At this point there will be a phase transition to the 
solid phase. Hence the phase diagram will indeed contain re-entrant liquid phases as 
proposed by Buhmann ef ai (1991). The experimental evidence indicates that these 
occur at U = $, and $ while Plaut el a1 (1991) found that the highest value of U 
for which the solid was present was U = 0.28 f 0.02. However, it must be noted 
that in the original results of Andrei et al (1988) a possible solid phase was found for 
Y N 0.34. Glattli ef nl (1991) have also reported a liquid phase close to v = which 
would correspond to i = 2, vi = 1 ffl (9). We can use the experimental value of Plaut 
et aZ(1991) to determine A E  = EL-Es  at U = 4 by assuming E +  = E -  = A/2 with 
A ,  = 0.009 (Isihara 1989) in (12), so that A E  = 0 at U = 0.28. If we also m u m e  
that A E  at the ground states U = uq decreases in magnitude until the solid phase 
becomes the only stable phase for U > 0.1 (see Isihara 1989), we can then sketch 
A E ( v )  along the melting cutve, expressed in units of kT,, as shown in figure 6. 
The gradients at the cusps in A E  are determined by the excitation energies and the 
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dose to the liquid ground state. Note the important property that at,/& is a 
function only of U, as required by scaling arguments (Tho 1990). All the thermody- 
namic functions should depend only on v and t = TIT,, in this region of the ( t ,  v )  
plane. The magnetization change along the melting cuwe A M  = - ( a A F / a H ) ,  
as calculated from our simple model is shown in figure 6 and shows the features that 
were derived from thermodynamic argumenb by Lea el a1 (1991). 

5. Discussion and summary 

In summary we have 

(i) proposed a phenomenological model for which the analogue, equation (l), 
of the Clausius-Clapeyron equation for the melting curve of a Wigner crystal can 
be integrated-the simplest model of the phase boundaries of the phases G-C, in 
figure 1 gives a re-entrant phase diagram; 

(ii) calculated the magnetization of two closely related microscopic models: (a) 
an anyon gas model in the classical limit and @) a compwite fermion model, which 
complementr (a) in that the magnetization and entropy are determined at low tem- 
peratures. 

While the present models do not allow a fully quantitative prediction of the 
melting curve of the two-dimensional Wigner crystal, the main features of the mag- 
netization of the electron liquid are reproduced by the two microscopic models (a) 
and @) above. It is our distinct impression that the present work supports the use- 
fulness of the anyon concept in magnetic fields, although lurther work remains to be 
done to relate the model to the composite fermion approach. Currently, our view is 
that the two models are complementary-one being readily calculable in the classical 
limit and the other being most tractable at low temperatures. Both models, in the 
end, relate to an electron associated with an integral number of flux lines, and the 
decomposition into ‘fermions plus additional flux lines’, as opposed to ‘anyons’ may 
be a matter of semantics, although we have at present no decisive conclusion on this 
pointt. Our final comment is that while we feel that our work supports the model 
for anyons in magnetic fields, no conclusions are to be drawn from the present study 
as to the usefulness, or otherwise, of the model of field-free anyons in the context of 
high-temperature superconductivity. 
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